Year 13

Student Pack

Subject:
 Physics

Section	Contents
1	- Online resources
2	- Revision tasks
3	- Additional work and learning resources

Online Science resources

- Kerboodle - www.kerboodle.com Online access to textbooks and other resources
- Seneca - www.senecalearning.com Revision activities
- Memrise - www.memrise.com Keyword revision
- OCR - www.ocr.org.uk Exam board specific resources
- Revision science - $\underline{w w w . r e v i s i o n s c i e n c e . c o m ~ O n l i n e ~ r e v i s i o n ~ r e s o u r c e s ~}$

Please use the resources above, your notes and your textbooks to work through the following exam style questions.

These are based on topics previously covered in Year 12.
Mark schemes will be emailed to you to allow you to self-assess your work.

Refer to the Physics A datasheet for data, formulae and relationships information.
1 The CD in a computer drive is rotated at constant angular velocity so that it completes 4000 revolutions in a minute.

Calculate:

a the angular velocity of the $C D$ in rad s ${ }^{-1}$
\qquad
\qquad
b the linear speed of a point 5.0 cm from the centre of the $C D$
\qquad
c the time, in seconds, taken for the CD to complete one revolution.
\qquad
2 The Moon orbits the Earth in a circle of radius $3.84 \times 10^{5} \mathrm{~km}$. It takes 27.3 days to complete one orbit.
Calculate:
a the angular velocity of the Moon in rad s ${ }^{-1}$
\qquad
\qquad
b the linear speed of the Moon
\qquad
c the magnitude and direction of the Moon's acceleration in its orbit.
\qquad
\qquad
3 a Explain why a body moving at constant speed in a circular path needs to have a resultant force acting upon it.
\qquad
\qquad
b i A man standing at a point on the equator is really in circular motion about the centre of the Earth.
Calculate the angular speed of the man.
\qquad
\qquad
ii The radius of the Earth is 6400 km . The man has a mass of 89 kg .
Calculate the resultant force which must act on the man in order for this circular motion to take place.
\qquad
\qquad
iii If the man were to stand on a set of weighing scales calibrated in newtons, what reading would he observe on the scales?
\qquad
\qquad
\qquad
4 A ball attached to the end of a long light string is made to rotate in a horizontal circular path at a constant speed. The forces acting on the ball are its weight, W, and the tension, T, in the string.

Figure 1

Figure 2

a With reference to the free-body force diagram in Figure 2, explain how it is possible for the ball to move with constant speed and yet still be accelerating.
\qquad
\qquad
\qquad
b The ball has a mass of 0.020 kg and moves in a circle of radius 5.0 cm .
It completes 72 revolutions per minute.
Calculate:
i the speed of the ball
\qquad
ii the magnitude and direction of the force which keeps the ball moving in a circular path.
\qquad
c Describe and explain how you would expect the path of the ball to change when it is rotated at a higher speed.
\qquad
\qquad

5 a A car travels at a constant speed, v, on a circular road of radius, r. The road is banked at an angle, θ, as shown in Figure 3. The car's speed is such that there is no sideways frictional force acting between the tyres and the road surface.

Figure 3

i Mark on Figure $\mathbf{3} \mathbf{b}$ the forces acting on the car in the vertical plane. Give each of your forces a suitable label.
ii The track is banked at an angle of 18° and the circular path of the road has a radius of 36 m . Calculate the speed which the car must travel so that there is no sideways frictional force between the tyres and the road surface.
\qquad
\qquad
\qquad
b The same car later travels on a straight road at a speed of $60 \mathrm{~km} \mathrm{~h}^{-1}$. It passes over a hump-backed bridge. The top of the bridge may be considered to be the arc of a circle in the vertical plane, as shown in Figure 4.The car passes over the bridge without losing contact with the road surface.

Figure 4
Calculate the radius of curvature of the bridge.
\qquad
\qquad

6 Figure 5 shows an aircraft flying with its wings at an angle of 35° to the horizontal in order to fly in a horizontal circle of radius, R. There are two forces acting on the aircraft in the vertical plane: the weight, W, and the lift force, L, generated by the airflow over the wings. The lift force, L, acts at right angles to the surface of the wings at all times.
The aircraft has a mass of $4.0 \times 10^{4} \mathrm{~kg}$ and flies at a constant speed of $250 \mathrm{~m} \mathrm{~s}^{-1}$.

Figure 5

a Calculate the vertical component of L required for horizontal flight.
b Calculate the horizontal component of L.
\qquad
\qquad
c Calculate the centripetal acceleration of the aircraft.
\qquad
d Determine the radius of the circular path flown by the aircraft.

Oxford A Level Sciences

OCR Physics A

20 Cosmology (The Big Bang)
 Exam-style questions

Refer to the Physics A datasheet for data, formulae and relationships information.
1 a Define:
i a light year
\qquad
ii a parsec.
\qquad
\qquad
b Acrux is the brightest star in the Southern Cross. When viewed through a telescope it is seen to consist of two component stars with a separation of 4.0 arcseconds. Given that Acrux is 320 ly from Earth, determine the distance between the two component stars. Give your answer in metres.
\qquad
\qquad
\qquad
c The Whirlpool galaxy is 23 million light years from the Earth. Calculate the distance to this galaxy in parsecs.
\qquad
\qquad
\qquad
2 The red shift of a galaxy's spectrum can be used to determine the velocity of the galaxy relative to Earth.
a The wavelength of the hydrogen alpha line in the spectrum of a galaxy is measured to be 660.92 nm . The wavelength of the same line measured in the laboratory is 656.28 nm . Calculate the velocity of the galaxy.
\qquad
\qquad

Oxford A Level Sciences
OCR Physics A

20 Cosmology (The Big Bang) Exam-style questions

b The table below gives the velocity and distance of five galaxies observed in different constellations.

Galaxy in constellation of	Velocity/km s¹	Distance/Mpc
Virgo	1200	15
Ursa Major	15400	190
Corona Borealis	22000	280
Bootes	39400	490
Hydra	60600	760

Plot a graph of the data in the table and use it to determine a value for the Hubble constant.

3 a Observation on a binary star system show that each of the stars are rotating about their common centre of mass with an orbital speed of $390 \mathrm{~km} \mathrm{~s}^{-1}$.
A prominent absorption line due to hydrogen is observed in the spectrum from the binary system. The wavelength of this line measured from a laboratory source is 656.28 nm .
Calculate the maximum and minimum values for the wavelength of this line due to the stars' orbital motion.
\qquad
\qquad
\qquad

Oxford A Level Sciences

OCR Physics A

20 Cosmology (The Big Bang)
 Exam-style questions

b The Andromeda galaxy is currently located at a distance of 725 kpc . It is known to be approaching the Milky Way at a speed of $105 \mathrm{~km} \mathrm{~s}^{-1}$.
i Atomic hydrogen emits a strong radio signal at a wavelength of 0.211207 m , as measured in the laboratory. The same radio signal is detected in emissions from the Andromeda galaxy. Explain why the wavelength of this signal is different from the value observed in the laboratory.
Calculate the wavelength of the signal in Andromeda's spectrum. You should work to 6 d.p. in this calculation.
\qquad
\qquad
\qquad
ii It is thought that the Andromeda galaxy may eventually collide with the Milky Way. Estimate the time, in s, which will elapse before a possible impact with the Milky Way.
\qquad
iii State one assumption you have made in determining your answer to ii.

4 a Explain how astronomers are able to deduce that most galaxies are moving away from Earth.
\qquad
\qquad

20 Cosmology (The Big Bang)
 Exam-style questions

b Figure 1 shows a graph of recessional speed of some galaxies plotted against their distance from Earth.

Figure 1
Sketch a best-fit straight line on Figure 1 and hence determine a value for the Hubble constant.
\qquad
c The presence of calcium in a galaxy is indicated by a strong absorption line in the spectrum. In the laboratory, this line occurs at 390.0 nm . The same line is observed to occur at 395.7 nm in the spectrum from a particular galaxy.
i Calculate the recessional speed of the galaxy.
\qquad
\qquad
ii Use Figure 1 to estimate the distance of the galaxy from Earth.

20 Cosmology (The Big Bang) Exam-style questions

5 The graph shows the spectrum of the cosmic microwave background radiation.
The shape of the graph is consistent with a black-body spectrum to which the Wien displacement law may be applied.

Figure 2
a Use the graph to estimate the black-body temperature.
Wien constant $=2.9 \times 10^{-3} \mathrm{mK}$
\qquad
b Explain how your answer to a provides evidence in support of the Big Bang theory for the origin of the Universe.
\qquad
c State and explain another piece of experimental evidence in support of the Big Bang theory.
\qquad
\qquad
\qquad

20 Cosmology (The Big Bang) Exam-style questions

6 A binary star system consists of two stars, \mathbf{A} and \mathbf{B}, rotating about their common centre of mass. Figure 3 shows three absorption lines in the spectra from the binary system measured over a period of time. The diagram is not drawn to scale.

Figure 3
a Use Figure 4 to describe the motion of the system and explain why the observed absorption lines change with time in the way illustrated in Figure 3.
\bigcirc

B

Figure 4
\qquad
\qquad
\qquad
\qquad

20 Cosmology (The Big Bang) Exam-style questions

b What is the period of this binary system?
c Using the wavelength values given in Figure 3, calculate the observed speed of star A relative to star B.
\qquad

Oxford A Level Sciences

Refer to the Physics A datasheet for data, formulae and relationships information.
1 a Write a word equation stating Newton's law of gravitation.
\qquad
\qquad
\qquad
b Venus may be assumed to be a spherical planet with the following properties:
mass of Venus $=4.87 \times 10^{24} \mathrm{~kg}$
radius of Venus $=6.05 \times 10^{6} \mathrm{~m}$
Calculate the force exerted on a body of mass 2.00 kg on the surface of Venus.
\qquad
\qquad
c The mass of the Earth is $6.0 \times 10^{24} \mathrm{~kg}$ and that of the Moon is $7.4 \times 10^{22} \mathrm{~kg}$. If the distance between their centres is $3.8 \times 10^{8} \mathrm{~m}$, calculate at what point on the line joining their centres there is no net gravitational force. You may neglect the effect of the Sun and other planets.
\qquad
\qquad
\qquad
\qquad
2 a Write a word equation that defines the gravitational potential at a point in the Earth's gravitational field.
\qquad
\qquad
\qquad
b Explain what is meant by the velocity of escape from a planet.
\qquad
\qquad
c A neutron star has a radius of 11 km and a mass of $2.2 \times 10^{29} \mathrm{~kg}$. A meteorite enters the gravitation field of the neutron star with a negligible kinetic energy. Calculate the speed with which it will strike the surface of the star.
\qquad
\qquad
\qquad
3 a Show that the speed, v, of a particle in a circular orbit of radius, r, around a planet of mass, M, is given by the formula

$$
v=\sqrt{\frac{G M}{r}}
$$

\qquad
\qquad
b Figure 1 shows two of the moons of Jupiter, lo and Callisto. The moons move in circular orbits around Jupiter. Io is $4.2 \times 10^{8} \mathrm{~m}$ from the centre of Jupiter and Callisto is $1.9 \times 10^{9} \mathrm{~m}$ from the centre. Callisto has an orbital speed of $8.2 \mathrm{~km} \mathrm{~s}^{-1}$.

Figure 1
i Determine the mass of Jupiter.
\qquad
\qquad
ii Calculate the orbital speed of lo.
\qquad
\qquad

Oxford A Level Sciences

OCR Physics A
iii Calculate the value of the ratio
$\frac{\text { gravitational field strength of Jupiter at lo }}{\text { gravitational field strength of Jupiter at Callisto }}$
\qquad

4 A space station is in a stable circular orbit at a distance of $2.2 \times 10^{7} \mathrm{~m}$ from the Earth's centre. The radius of the orbit of geostationary satellites is $4.2 \times 10^{7} \mathrm{~m}$.
a Use the above data and Kepler's third law to show that the orbital period of the space station is approximately nine hours.
\qquad
\qquad
\qquad
b Use your value, or nine hours, for the period of the space station to estimate the magnitude of the Earth's gravitational field strength at the orbit of the space station.
\qquad
\qquad
c In its stable orbit, the space station is subject to a gravitational force. State and explain whether work is done by this force.
\qquad
d Newton stated in his third law that forces should exist in pairs. State the point of application and the direction of action of the force that forms a pair with the force mentioned in \mathbf{c}.
\qquad

Oxford A Level Sciences

OCR Physics A
18 Gravitational fields
Exam-style questions

5 a i State the name given to satellites that orbit the Earth with a period of exactly one day above the equator.
\qquad
ii State one other feature of these orbits.
\qquad
iii For customers who subscribe to a satellite TV service this type of satellite has a major beneficial effect on their installation requirements. Describe this benefit.
\qquad
b Show that the radius of the orbit of a satellite with an orbital period of one day is about $4 \times 10^{7} \mathrm{~m}$.
Mass of the Earth is $6.0 \times 10^{24} \mathrm{~kg}$
\qquad
\qquad
c i State Kepler's third law.
ii The Moon orbits the Earth with a period of 27.3 days. Use the information given in \mathbf{b} to calculate the following ratio:

$$
\frac{\text { distance of the Moon from the Earth's centre }}{\text { distance of the satellite from the Earth's centre }}
$$

\qquad

Oxford A Level Sciences

OCR Physics A
18 Gravitational fields
Exam-style questions

6
a State Kepler's first and second laws of planetary motion.
\qquad
\qquad
b A low earth orbit (LEO) satellite is one which has a relatively small orbital radius.
Table 1 shows the period, T, and average orbital radius, r, for some LEO satellites.

$\boldsymbol{T} / \mathbf{1 0}^{\mathbf{3}} \mathbf{s}$	$\boldsymbol{r} / \mathbf{1 0 ^ { 6 }} \mathbf{m}$	$\mathbf{T}^{\mathbf{2}} \mathbf{1 0}^{\mathbf{7}} \mathbf{s}^{\mathbf{2}}$	$\boldsymbol{r}^{\mathbf{3}} \mathbf{1 0}^{\mathbf{2 0}} \mathbf{m}^{\mathbf{3}}$
6.3	7.4	4.0	4.05
6.7	7.7	4.5	4.57
7.0	7.9	4.9	4.93
7.2	8.1	5.2	
7.6	8.4	5.9	

Table 1

i Complete the final column of Table 1 by calculating r^{3}.
ii Plot a graph of T^{2} against r^{3} on the axes of Figure 2. Sketch the best fitting straight line through the points.

Figure 2
(2 marks)
iii Use your graph to calculate a value for the mass of the Earth, showing all your working.
\qquad

OCR Physics A, June 2009 (amended)

Oxford A Level Sciences

Refer to the Physics A data sheet for data, formulae and relationships information.
1 a In an experiment with helium gas at constant volume, the pressure exerted by the gas is measured at $10^{\circ} \mathrm{C}$ intervals from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Describe how you would use this data to determine a Celsius value for absolute zero.
\qquad
\qquad
\qquad
b A cylinder of volume $5.5 \times 10^{-3} \mathrm{~m}^{3}$ contains nitrogen at a temperature of $18^{\circ} \mathrm{C}$ and a pressure of $3.0 \mathrm{MNm}^{-2}$.
Calculate the volume the nitrogen would occupy at a temperature of $0^{\circ} \mathrm{C}$ and a pressure of $1.0 \times 10^{5} \mathrm{Nm}^{-2}$.
\qquad
\qquad
2 a The equation relating the pressure, p, and the volume, V, of an ideal gas is

$$
p V=n R T
$$

Identify the terms n, R, and T.
\qquad
\qquad
\qquad
b A bottle of volume $1.2 \times 10^{-4} \mathrm{~m}^{3}$ contains air. A vacuum pump reduces the pressure of the air in the bottle to 180 Pa at a temperature of $20^{\circ} \mathrm{C}$.
Molar mass of air $=0.029 \mathrm{~kg} \mathrm{~mol}^{-1}$
Calculate:
i the number of air molecules remaining in the bottle
\qquad
\qquad
ii the density of the air remaining in the bottle after evacuation.
\qquad
\qquad

Oxford A Level Sciences

3 a State two quantities that increase when the temperature of a given mass of gas is increased while the volume occupied by the gas remains constant.
\qquad
\qquad
b A car tyre when inflated has a volume of $1.4 \times 10^{-2} \mathrm{~m}^{3}$. The pressure of the air is measured at a temperature of $17^{\circ} \mathrm{C}$ and recorded as 210 kPa .
The molar mass of air is $0.029 \mathrm{~kg} \mathrm{~mol}^{-1}$.
i Calculate the amount of air, in moles, in the tyre.
\qquad
\qquad
\qquad
ii When the car is driven, the temperature of the tyre increases to $35^{\circ} \mathrm{C}$.
Assuming that the volume of the tyre is unchanged, calculate the pressure in the tyre at its operating temperature.
\qquad
\qquad
\qquad
4 a A small dust particle in the upper atmosphere is struck by five molecules in succession. The speeds of the molecules are $300 \mathrm{~ms}^{-1}, 500 \mathrm{~ms}^{-1}, 700 \mathrm{~ms}^{-1}$, $400 \mathrm{~ms}^{-1}$ and $600 \mathrm{~ms}^{-1}$.
Calculate:
i the mean speed of the molecules, \bar{c}
ii the root mean square (r.m.s.) speed of the molecules, $\sqrt{\overline{c^{2}}}$.
\qquad
\qquad
\qquad
b Show that, for an ideal gas, the r.m.s. speed of its molecules is given by the formula

$$
\sqrt{\overline{c^{2}}}=\sqrt{\frac{3 R T}{M}}
$$

where M is the mass of one mole of the gas in kilograms.
\qquad
\qquad
c Calculate, for an ideal gas, the ratio
r.m.s. speed of its molecules at $250{ }^{\circ} \mathrm{C}$
r.m.s. speed of its molecules at $25^{\circ} \mathrm{C}$
\qquad
\qquad
d The velocity required for molecules to escape from the Earth's atmosphere is about $11 \mathrm{~km} \mathrm{~s}^{-1}$. Estimate the temperature to which hydrogen must be heated in order for the r.m.s. speed of its molecules to be equal to this escape velocity.
Molar mass of hydrogen $=2.0 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}$
\qquad

5 a Gas molecules are said to make perfectly elastic collisions with one another.
i State what is meant by a perfectly elastic collision.
ii Explain, in terms of the behaviour of its molecules, how a gas exerts a pressure on the walls of its container.
\qquad
\qquad
\qquad
iii Explain, in terms of the behaviour of molecules, why the pressure of a gas in a container of constant volume increases when the temperature of the gas is increased.
\qquad
\qquad
b A weather balloon is filled with helium gas. Just before take-off, the pressure inside the balloon is 105 kPa and its internal volume is $5.0 \times 10^{3} \mathrm{~m}^{3}$. The temperature inside the balloon is $20^{\circ} \mathrm{C}$.
The pressure, volume and temperature of the helium gas change as the balloon rises into the upper atmosphere.
i The balloon expands to a volume of $1.2 \times 10^{4} \mathrm{~m}^{3}$ in the upper atmosphere, where the temperature inside the balloon is $-30^{\circ} \mathrm{C}$. Calculate the pressure inside the balloon.
\qquad
\qquad
ii Suggest why it is necessary to release helium from the balloon as it continues to rise.

OCR Physics A, January 2012
6 An ideal gas is trapped in an insulated cylinder by a piston that is free to move. The gas is at atmospheric pressure, p_{1}.
a The gas is heated from $27^{\circ} \mathrm{C}$ to $327^{\circ} \mathrm{C}$. During the heating process the piston is held at its original position.
Show that the pressure immediately after heating is $2 p_{1}$.
\qquad
b The piston is now released. The gas pushes the piston out until the pressure of the gas returns to atmospheric pressure, p_{1}. The volume of the gas increases from its original value V_{1} to $1.5 V_{1}$.
Calculate the final temperature of the gas in ${ }^{\circ} \mathrm{C}$.
\qquad
\qquad
c i The original volume V_{1} of gas trapped in the cylinder is $3.0 \times 10^{-5} \mathrm{~m}^{3}$. Atmospheric pressure p_{1} is $1.0 \times 10^{5} \mathrm{~Pa}$.
Show that the amount of gas in the cylinder is about $1 \times 10^{-3} \mathrm{~mol}$.
\qquad
ii The molar mass, M, of the gas is $0.016 \mathrm{~kg} \mathrm{~mol}^{-1}$.
Calculate the mass, m, of gas, in kg , present in the cylinder.
iii During the initial heating process all of the heat supplied to the gas is converted into kinetic energy of the gas molecules. Calculate the increase in the internal energy of the gas during that process.
Specific heat capacity of the gas $=1300 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$

Refer to the Physics A datasheet for data, formulae and relationships information.

Section A

1 The graph shows the cooling curve for a molten wax.

Figure 1

There is no change in temperature between the points \mathbf{L} and \mathbf{M} because:
A The wax only loses energy while the temperature falls.
B When the wax changes state, latent heat is the source of the energy lost.
C The wax absorbs energy when solidifying.
D The specific heat capacity of the wax changes during solidification.

Your answer \square
2 In an experiment to demonstrate Brownian motion in a liquid, pollen grains are observed with a microscope. Which of the following statements is/are a correct explanation of the observations?

1 The motion of the pollen grains is random because of random changes in the number of liquid molecules hitting the pollen.
2 The molecules of the liquid have a random distribution of speeds.
3 The mass of the pollen grains is much greater than the mass of the molecules.
A 1 only
B 1 and 2
C 1 and 3
D 3 only
Your answer \square (1 mark)

Module 5 Newtonian world and astrophysics
 Exam-style questions

3 An ideal gas at a pressure, P, and temperature, T, contains N molecules per unit volume. The pressure of the gas is increased to $2 P$ and the temperature is reduced to $0.5 T$. What does the number of molecules per unit volume now become?

A 0.5 N
B N
C 0.25 N
D 4 N

Your answer \square
4 A mechanical system is forced to vibrate by an external oscillator. There is minimal damping in the system. Which of the following statements is true at resonance?

1 The amplitude of the vibration is a maximum.
2 The driving frequency of the oscillator is equal to the natural frequency of the system.
3 The energy transferred from the oscillator to the system is a maximum.
A 1, 2, and 3
B 1 and 2
C 1 and 3
D 2 only

Your answer \square
5 Two satellites, \mathbf{K} and \mathbf{L}, travel in circular orbits of radii 8000 km and 12000 km , respectively, around the centre of the Earth.

What is the value of the ratio $\frac{\text { periodic time for } K}{\text { periodic time for } L}$?
A $\frac{2}{3}$
B $\left(\frac{2}{3}\right)^{1.5}$
C $\left(\frac{2}{3}\right)^{\frac{2}{3}}$
D $(1.5)^{1.5}$

Your answer \square

Module 5 Newtonian world and astrophysics Exam-style questions

6 Dark lines are seen in the Sun's spectrum.
What are these dark lines caused by?
A interference between light from different points on the sun's surface
b diffraction of light as it travels from the Sun to the Earth
C absorption of certain frequencies by gases in the outer layers of the Sun
D atoms in the Sun's surface emitting intense light at certain frequencies
Your answer \square
7 The Hertzsprung-Russell diagram directly compares which two properties of stars?

A size and temperature
B luminosity and temperature
C size and distance
D luminosity and surface area

Your answer \square
8 Two springs, \mathbf{X} and \mathbf{Y}, both obey Hooke's law. They have force constants of magnitude $2 k$ and k, respectively.
The springs are each stretched by a force that is gradually increased from zero up to an identical maximum value. The work done in stretching spring \mathbf{X} is W_{x}, and the work done in stretching spring \mathbf{Y} is W_{Y}.
Which formula correctly relates W_{X} and W_{Y} ?
A $W_{X}=0.25 W_{Y}$
B $W_{X}=0.5 W_{Y}$
C $W_{X}=2 W_{Y}$
D $W_{X}=4 W_{Y}$
Your answer \square

Module 5 Newtonian world and astrophysics
 Exam-style questions

9 A beam of monochromatic light of wavelength 550 nm is incident normally on a diffraction grating. The angle between the two second-order diffracted beams is 45°.
What is the grating spacing?
A $2.9 \mu \mathrm{~m}$
B $1.6 \mu \mathrm{~m}$
C $1.4 \mu \mathrm{~m}$
D $0.78 \mu \mathrm{~m}$

Your answer \square
10 A star has surface temperature $3200^{\circ} \mathrm{C}$ and luminosity L. A second star of identical size has a surface temperature of $2700^{\circ} \mathrm{C}$.
What is the luminosity of the second star expressed in terms of L ?
A 0.51 L
B 0.84 L
C 1.9 L
D $0.54 L$

Your answer \square

Section B

11 a The average intensity of solar radiation incident on a solar panel is $250 \mathrm{~W} \mathrm{~m}^{-2}$. The solar panel uses this radiation to heat water flowing through it. The rate of flow of water through the panel is kept constant at $5.0 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~min}^{-1}$. A single solar panel has an area of $4.0 \mathrm{~m}^{2}$ and 80% of the solar radiation is used to heat the water.
Calculate the temperature rise of the water as it flows through the panel.
Specific heat capacity of water $=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
\qquad
\qquad
\qquad
\qquad (4 marks)

Module 5 Newtonian world
 and astrophysics
 Exam-style questions

b A group of scientists have formulated an organic liquid to be used in a heat exchanger. They now need to determine the specific heat capacity of the liquid.
Write a plan describing how they could do this in a laboratory.
You should include:

- a labelled diagram of the arrangement
- a list of the measurements to be taken
- an explanation of how the value of c would be determined from your results
- possible sources of uncertainty in your measurements and how these could be reduced.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

12 a A gas molecule of mass m travelling perpendicular to the wall of a container hits the wall with speed v. Explain why the molecule rebounds with speed v and determine the change of momentum experienced by the molecule.
\qquad
\qquad

Module 5 Newtonian world and astrophysics Exam-style questions

b A constant mass of gas occupies a container of constant volume. Use the kinetic theory of gases to explain the increase in the force exerted on the walls of the container by the gas when its temperature is raised.
\qquad
\qquad
\qquad
c i The tyres of a car are pumped up with air to a pressure $2.1 \times 10^{5} \mathrm{~Pa}$ at $17^{\circ} \mathrm{C}$ before a journey. After completing the journey, the temperature of the air in the tyres rises to $59^{\circ} \mathrm{C}$.
Calculate the new pressure of the air. Assume the volume of the tyres remains unchanged.
\qquad
\qquad
ii Assuming that the total mass of the car in \mathbf{i} stays constant at 1800 kg , calculate the change in the total area of contact of the tyres with the road as a result of the rise in temperature.
\qquad
\qquad
\qquad

13 a Figure 2 shows a Griffin search helicopter viewed from above.

Figure 2
The blades of the helicopter rotate in a circle of radius 6.9 m . When the helicopter is hovering, the blades propel air vertically downwards with a constant speed of $16 \mathrm{~m} \mathrm{~s}^{-1}$. Assume that the descending air occupies a uniform cylinder of radius 6.9 m .
Density of air is $1.3 \mathrm{~kg} \mathrm{~m}^{-3}$

Module 5 Newtonian world and astrophysics Exam-style questions

i Show that the mass of air propelled downwards in a time of one minute is about $2 \times 10^{5} \mathrm{~kg}$.
\qquad
\qquad
ii Calculate the force provided by the rotating helicopter blades to propel this air downwards.
\qquad
\qquad
\qquad
iii State, in relation to this situation, the law you have used to determine the answer to ii.
\qquad
iv Calculate the mass of the hovering helicopter. Explain your reasoning.
\qquad
\qquad
b Figure 3 shows an aeroplane flying in a horizontal circle at constant speed. The weight of the aeroplane is W and the lift force acting at right angles to the wings is L.

Figure 3
i Explain how the lift force, L, keeps the aeroplane flying in a horizontal circle.
\qquad
\qquad
ii Explain how the aeroplane is able to fly at constant speed even though there is a resultant force acting upon it.
\qquad
\qquad

Module 5 Newtonian world
 and astrophysics
 Exam-style questions

Abstract

iii The aeroplane flies in a horizontal circle at a constant speed of $220 \mathrm{~m} \mathrm{~s}^{-1}$. The wings of the aeroplane are kept at an angle of 25° to the horizontal throughout. Calculate the radius of the circle.

\qquad
\qquad
\qquad
\qquad

14 a A body vibrates with simple harmonic motion about its equilibrium position.
Describe the difference between:
i displacement and amplitude
\qquad
\qquad

ii frequency and angular frequency.

\qquad
\qquad
b Figure 4 shows the cross section of a dockyard basin. The sides of the basin are vertical and the bottom is flat. The tide causes the surface of the water to perform vertical simple harmonic motion (SHM). The period of the SHM is 12.5 hours. The surface of the water in the basin is calm throughout the oscillation.

Figure 4

Module 5 Newtonian world and astrophysics Exam-style questions

The maximum depth of the water is 21 m and the minimum depth is 15 m .
i Calculate the amplitude of the water oscillation.
\qquad
ii Calculate the frequency of the water oscillation.
\qquad
\qquad
iii Calculate the maximum vertical speed of the water surface.
\qquad
\qquad
iv Write an expression for the depth of water, d, in metres, present in the basin in terms of time, t, in seconds.
\qquad
\qquad

15 a A planet of mass, m, moves in a circular orbit of radius, r, about a star of mass, M. The planet has an orbital period, T.
Use your knowledge of circular motion and Newton's law of gravitation to derive an equation representing Kepler's third law.
\qquad
\qquad
\qquad
\qquad
b S. Synnott used data from the Voyager 1 spacecraft to identify the Amalthea group of moons orbiting Jupiter. Table 1 gives part of the data for two of these moons.

Name	Mean orbital radius $/ \mathbf{1 0}^{\mathbf{8}} \mathbf{m}$	Orbital period/hour
Metis	1.28	7.08
Thebe	2.22	

Table 1

Module 5 Newtonian world and astrophysics Exam-style questions

i Calculate the speed of Metis in its orbit.
\qquad
\qquad
ii Show that the mass of Jupiter is about $2 \times 10^{27} \mathrm{~kg}$.
\qquad
\qquad
iii Complete the data table by determining the orbital period of Thebe.
\qquad
\qquad
OCR Physics A, June 2010
16 a Figure 5 shows how the recessional speed, v, of galaxies varies with their distance, d, from the Earth.

Figure 5

i Use Figure 5 to determine the value of the Hubble constant.
\qquad
\qquad

OCR Physics A

ii Hence, estimate the age of the Universe in years.
1 year $=3.2 \times 10^{7} \mathrm{~s}$ and $1 \mathrm{pc}=3.1 \times 10^{16} \mathrm{~m}$
\qquad
\qquad
\qquad
b Describe the evidence for the Big Bang model of the Universe.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Refer to the Physics A datasheet for data, formulae and relationships information.
1 a Define simple harmonic motion.
\qquad
\qquad
\qquad
\qquad
b Figure 1 shows a mass hanging on a spring. When the mass is pulled down and then released, it oscillates with simple harmonic motion. The position of the mass can be determined using the metre rule mounted alongside the spring. Figure 2 shows the variation of this position with time. The mass was released at time $t=0 \mathrm{~s}$.

Figure 1

Figure 2

i Use Figure 2 to determine:
1 the frequency of the oscillation
2 the amplitude of the oscillation.
\qquad
\qquad
\qquad
ii Calculate the maximum acceleration experienced by the mass and state the position of the mass at the time when this occurs.
\qquad
\qquad
\qquad
iii Use Figure 2 to state two times at which the mass has maximum speed.
\qquad
c On the axes of Figure 3, sketch the variation with time, t, of the acceleration, a, of the mass. Add a suitable scale on the y-axis.

Figure 3

2 Figure 4 shows a glider of mass 0.30 kg on a linear air track. The glider is held by two identical stretched springs. When the glider is pulled 6.0 cm to the right and then released, it oscillates freely without friction.

Figure 4

Oxford A Level Sciences

OCR Physics A

17 Oscillations Exam-style questions

Figure 5 shows the variation of the elastic strain energy stored in the springs with the displacement, x, of the glider from its equilibrium position. The elastic strain energy stored in the springs when the glider is not oscillating is 50 mJ .

Figure 5
a State:
i the total energy stored in the system when the glider is oscillating
ii the maximum kinetic energy of the glider.
\qquad
b i Show that the glider has a maximum speed of about $0.49 \mathrm{~m} \mathrm{~s}^{-1}$.
\qquad
ii Use Figure 5 to determine the amplitude of the oscillations required to halve the maximum speed of the glider. Show your reasoning.
\qquad

3 Figure 6 shows a mass attached to the end of a spring. The mass is pulled down and then released. The mass performs vertical simple harmonic motion.

Figure 6
a Mark the following statements about the oscillating mass-spring system as true or false.

Statement	True/False
The period of the oscillations is constant	
The velocity of the mass is proportional to the displacement	
The net force on the mass is equal to the weight	
The acceleration of the mass is a maximum at the midpoint of the oscillations	

(2 marks)
b A student wishes to investigate whether the period of oscillation of a simple pendulum is constant for all angles of swing.
Describe how the student should carry out the investigation.
Include the following in your description:

- a diagram of the apparatus with angle of swing labelled
- details of how the measurements would be made
- how these results would be used to form a conclusion
- the major difficulty likely to be encountered and how this might be overcome.

Oxford A Level Sciences
OCR Physics A

17 Oscillations Exam-style questions

\qquad
\qquad
\qquad
\qquad
\qquad

4 A mass is attached to the end of a spring, which hangs from a rigid support. The mass is pulled down and then released. The mass oscillates vertically about its equilibrium position.
Figure 7 shows the graph of the acceleration, a, of the mass against its displacement, x, from its equilibrium position.

Figure 7
a Explain how the graph shows that the object is oscillating with simple harmonic motion.
\qquad
\qquad
\qquad

Oxford A Level Sciences

OCR Physics A

17 Oscillations Exam-style questions
b Use data from the graph to:
i find the amplitude of the motion
ii show that the period of oscillation is 0.4 s .
\qquad
\qquad
\qquad
c i The mass is released at time, $t=0$, with a displacement, $x=0.050 \mathrm{~m}$. Sketch a graph on the axes of Figure 8 to show how the displacement of the mass varies between $t=0$ and $t=1.0 \mathrm{~s}$. Add suitable scales to both axes.

Figure 8
\qquad
\qquad
ii State a displacement and time at which the system has maximum kinetic energy.
\qquad

5 Figure 9 shows a mass attached to two springs. The mass moves along a horizontal tube with one spring stretched and the other compressed. An arrow marked on the mass indicates its position on a scale. Figure 9 shows the situation when the mass is displaced through a distance, x, from its equilibrium position. The mass is experiencing an acceleration, a, in the direction shown. Figure 10 shows a graph of the magnitude of the acceleration, a, against the displacement, x.

Figure 9

Figure 10
a State one feature from each of Figure 9 and 10 which shows that the mass performs simple harmonic motion when released.
\qquad
b Use data from Figure 10 to show that the frequency of the simple harmonic oscillations of the mass is about 5 Hz .
\qquad
\qquad
c The mass oscillates in damped harmonic motion before coming to rest. On the axes of Figure 11, sketch a graph of the damped harmonic oscillation of the mass, from an initial displacement of 25.0 mm .

Figure 11

OCR Physics A, January 2006
6 a State two conditions concerning the acceleration of an object that apply when it is in simple harmonic motion.
\qquad
\qquad
b Figure 12 shows how the potential energy, in mJ , of a simple harmonic oscillator varies with displacement.

Figure 12
On Figure 12, sketch graphs to show the variation of:
i kinetic energy of the oscillator with displacement - label this graph K
ii the total energy of the oscillator with displacement - label this graph \mathbf{T}.
c Use Figure 12 to determine:
i the amplitude of the oscillations
ii the maximum speed of the oscillator of mass 0.12 kg
\qquad
iii the frequency of the oscillations.
\qquad
d Resonance can either be useful or a problem. Describe one example where resonance has a useful application and one example where resonance is a problem or nuisance.
For each example, identify what is oscillating and what causes these oscillations.
i a useful application \qquad
\qquad
ii a problem
\qquad
\qquad

Refer to the Physics A data sheet for data, formulae and relationships information.
1 a The solar system consists of planets, with their attendant moons, and dwarf planets orbiting the Sun. State two other types of body that orbit our Sun and describe two features which distinguish them from each other.
\qquad
\qquad
\qquad
\qquad
b The Sun is a main sequence star of average mass. Describe the way in which the Sun was formed and its most probable future evolution.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2 Antares is a red supergiant star in the constellation Scorpius.
a i Describe three characteristics of a red supergiant star.
\qquad
\qquad
\qquad
ii State what is meant by a constellation.
\qquad
b The future evolution of Antares will be very different from that of our own Sun.
Describe how you would expect Antares to evolve.
\qquad
\qquad
\qquad
\qquad
3 Figure 1 is an outline of the Hertzsprung-Russell (H-R) diagram.

Figure 1
a On Figure 1:
i label the axes and draw arrows to indicate the directions of increasing values
ii name the region which is shaded
\qquad
iii mark the approximate position that currently represents the Sun. Label this point \mathbf{S}.
b Also on Figure 1:
i mark and name positions in two other regions that the Sun is expected to occupy in the future.
ii draw a line showing the path that the Sun is expected to take over the next 5×10^{9} years.
c Explain what is likely to be the final fate of the Sun.
\qquad

4 a A diffraction grating is used to analyse the visible light emitted by a lamp containing hydrogen. A narrow beam of light is incident normally on the grating. The first-order spectrum of the diffracted light includes red and blue rays which emerge symmetrically from the grating, as shown in Figure 2.

Figure 2
The angle between the two blue rays is 30.2° and the angle between the two red rays is 46.4°.
The grating has 600 lines $/ \mathrm{mm}$.
Show that the wavelength of the blue light is 434 nm and that of the red light is 656 nm .
\qquad
\qquad
b The diffraction grating in \mathbf{a} is used to analyse the light emitted by the Sun. It is observed that its continuous spectrum is crossed by a series of dark lines, two of which correspond to the wavelengths determined in a. Describe how these dark lines are produced in the solar spectrum.
\qquad
\qquad
\qquad
\qquad
\qquad

5 a Figure 3 shows the lowest four energy levels of electrons in a hydrogen atom. Excited atoms of hydrogen can emit light of specific wavelengths when electrons 'fall' to lower energy levels.

$E_{1}=-13.6 \mathrm{eV}$
Figure 3
i Determine the wavelength which corresponds to transitions between the E_{3} and E_{2} levels. \qquad
\qquad
\qquad
ii The transition from E_{3} to E_{2} gives light in the visible part of the spectrum. Without calculation, suggest in which region of the spectrum you would expect to detect photons emitted when electrons transfer from the E_{3} to E_{1} level. Make your reasoning clear in your answer.
\qquad
\qquad
b Figure 4 shows the black-body radiation curves for three stars labelled A, B and C .

Figure 4
i State and explain, without calculation, which one of the three stars is the coolest.
\qquad
ii Calculate the black body temperature of star \mathbf{B}.
Wien's constant $=2.9 \times 10^{-3} \mathrm{mK}$
\qquad
\qquad

6 Rigel is the brightest star in the constellation Orion and the seventh brightest star in the night sky.
a The black-body radiation curve for Rigel shows a peak at a wavelength of 241 nm . Calculate the black-body temperature of Rigel.
Wien's constant $=2.9 \times 10^{-3} \mathrm{mK}$
b The luminosity of Rigel is 120000 times greater than the Sun.
Use Stefan's law to calculate the radius of Rigel.
Luminosity of the Sun $=3.85 \times 10^{26} \mathrm{~W}$
Stefan's constant $=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$
\qquad
\qquad
\qquad
c Explain how the spectrum obtained from Rigel can be used to give information about its composition.
\qquad
\qquad
\qquad

Oxford A Level Sciences

OCR Physics A

14 Thermal physics Exam-style questions

Refer to the Physics A data sheet for data, formulae and relationships information.
1 a Use the kinetic theory of matter to relate the properties of the solid, liquid, and gaseous phases of a substance, to the forces and distance between its molecules and to the motion of its molecules.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b A block of aluminium at $80^{\circ} \mathrm{C}$ is fully immersed in a beaker of water at 290 K . Describe the transfer of thermal energy between the three objects involved and any change in temperature that may take place.
\qquad
\qquad
\qquad
\qquad
2 Gallium has a melting point of $30^{\circ} \mathrm{C}$. Figure 1 shows how the temperature, T, of a small mass of gallium varies when it is heated at a steady rate from $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.

Figure 1

The graph shows three distinct sections labelled \mathbf{A}, \mathbf{B}, and \mathbf{C}.

Describe and explain the features of the graph in terms of the changes which occur to the separation and speed of the molecules and to their internal energy.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3 a Define the specific heat capacity of a substance.
\qquad
\qquad
b The specific heat capacity of a metal may be determined by using an electrical heater embedded into a block made out of the metal. Sketch a labelled diagram of the electrical circuit you would use.
c The pitch in a football stadium is prevented from freezing by an underground system of electrical heating cables. Prior to a match the pitch temperature falls to $-5.5^{\circ} \mathrm{C}$ to a depth of 6.0 cm . The area of the pitch is $1.3 \times 10^{4} \mathrm{~m}^{2}$. Calculate the thermal energy required to raise the temperature of the soil to $0^{\circ} \mathrm{C}$ assuming the density and specific heat capacity of the soil are $2500 \mathrm{~kg} \mathrm{~m}^{-3}$ and $1600 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$, respectively.
\qquad
\qquad
\qquad

14 Thermal physics Exam-style questions

4 a Derive the SI base unit for specific heat capacity.
\qquad
\qquad
\qquad
b A bottle containing 500 g of lemonade is placed in a refrigerator. The lemonade cools from $18^{\circ} \mathrm{C}$ to $4.0^{\circ} \mathrm{C}$ in a time of 90 minutes.
The specific heat capacity of lemonade is $3900 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.
Calculate:
i the thermal energy removed from the lemonade as it cools
\qquad
\qquad
ii the rate at which thermal energy is removed from the lemonade, in watts.
\qquad
5 a Define the specific latent heat of fusion of a substance.
\qquad
\qquad
b Describe an electrical experiment to determine the specific latent heat of vaporisation of water, L_{v}. Include in your answer:

- a labelled diagram of the apparatus
- a list of the measurements to be taken
- an explanation of how the value of L_{v} would be determined from your results
- possible sources of uncertainty in your measurements and how these could be reduced.

Oxford A Level Sciences

OCR Physics A

14 Thermal physics
 Exam-style questions

6 a A solid substance is placed into a sealed insulated container until it vaporises. The container is heated electrically at a constant rate until the substance has completely vaporised. Figure 2 shows the temperature against time graph for the entire process.

Figure 2

Use the graph to calculate for the substance:
i the ratio
specific heat capacity of the solid phase
specific heat capacity of the liquid phase
\qquad
\qquad
ii the ratio
$\frac{\text { specific latent heat of vaporisation }}{\text { specific latent heat of fusion }}$
\qquad
\qquad
b In an espresso coffee machine, steam at $100^{\circ} \mathrm{C}$ is passed into 250 g of milk in order to heat it from $15^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$.
Specific heat capacity of water $=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
Specific latent heat of vaporisation of water $=2.26 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1}$
Calculate the mass of steam condensed in the process.
\qquad
\qquad
\qquad

Wider reading to support your studies in Physics

Title	Author/Contributor	Topic
A Brief History of Time	Stephen Hawking	Astrophysics
The Elegant Universe	Brian Greene	Astrophysics
How to teach relativity to your dog	Chad Orzel	All
Forces of nature	Brian Cox	Forces
Smashing physics	Jon Butterworth	All
Black bodies and quantum Physics cats	Jennifer Ouellette	

Useful websites to support your studies in Physics

Website	Website Link	Topic
A level physics online	$\underline{\text { https://www.alevelphysicsonline.com/ }}$	All
Institute of physics	$\underline{\text { http://www.iop.org/ }}$	All
Physics and Maths Tutor	$\underline{\text { https://www.physicsandmathstutor.com/past- }}$	Chemistry - All modules
The Royal Society	$\underline{\text { http://rovalsol-chemistry/ } / / \text { nature.com }}$	All
The Scientific journal	$\underline{\text { http://nobelprize.org }}$	All
Nobel prize		All

